How do we set the probability of introduction in a scenario tree model to demonstrate freedom from disease?

Jette Christensen ${ }^{1}$ Henrik Stryhn ${ }^{2}$ Raphael Vanderstichel ${ }^{2}$
${ }^{1}$ Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
${ }^{2}$ Centre for Veterinary Epidemiological Research, University of Prince Edward Island, Canada

SUMMARY

We reviewed how the probability of introduction was defined and estimated in 11 articles where scenario tree models with temporal discounting had been applied. By an example we illustrated the potential impact of the value and distribution of PIntro and we developed a graphical illustration of the relationship between case definition (CD), time period (TP), design prevalence (DP) and probability of introduction (PIntro).

INTRODUCTION

Scenario tree models with temporal discounting [1] has been applied in Europe, Asia, Australia and North America to support claims of freedom from bacterial diseases (tuberculosis (TB) and Johne's disease), parasites (Trichinella and Echinococcus) and virus (Porcine Reproductive Respiratory Syndrome (PRRS), Classical Swine Fever (CSF), Avian Influenza (AI)) in livestock (swine, cattle, poultry, deer) and wildlife. The results have been reported in 11 articles $[2,3,4$, $5,6,7,8,9,10,11,12]$.

OBJECTIVE

Our objectives were to:
> explore the relationship between case definition (CD), time period (TP) and design prevalence (DP) and how the probability of introduction (PIntro) was set in the 11 published scenario tree models with temporal discounting [2,3,4,5,6,7,8,9,10,11,12]
> describe the relationship between CD, TP, DP \& PIntro
$>$ illustrate the potential impact of two methods of estimating PIntro on the posterior probability of freedom

MATERIALS AND METHODS

We extracted information on CD, TP, DP, reference population, and PIntro including how PIntro was estimated from the 11 manuscripts.

We developed a graphical description of the relationship among CD, TP, DP, reference population and PIntro.

We illustrated the potential impact of PIntro in an example where we applied the Canadian Notifiable Avian Influenza Surveillance System (CanNAISS) scenario tree model [3].

RESULTS LITERATURE REVIEW

The DP at the animal level ranged from $1 / 1 \mathrm{M}$ (no clustering) to 50% (clustering) and from 0.05% to 1% at farm level. The time period was consistently set to 1 year for bacteria and parasites and 1 month for virus. In five papers, the choice of case definition (CD) was justified by reference to EU or OIE regulations. The CD was not always clear from the publication. For livestock (except poultry) the reference populations were described by the number of farms and number of animals in the population but the average number of animals per farm was not reported. The wildlife population sizes were not reported.

The published definitions of PIntro were:
$>$ No introduction; or not provided [2,4,5,9,10]
$>$ Release and exposure; introduction and establishment [1,6,11]
$>$ Introduction (to herd) from contact to local infected animals and importation [8]
$>$ Monthly probability ... CSF will be introduced into Denmark [7]; probability of at least one introduction of NAI, at DPs, into ... flocks during a specific TP [3]

We found three types of approach to estimate PItntro (Figure 1).

Figure 1: Three published approaches to set the value of the probability of introduction
>1 divided by TPs; outbreaks divided by TPs [2,3,4,9]
$>$ Reference to risk models or risk model included [6,7,8,11*]
$>$ Arbitrarily [5]; No PIntro [10]; Annual prevalence [12*]

Figure 2: The relationship between case definition (CD), time period (TP), design prevalence (DP), reference population and probability of introduction (PIntro) with an example from the Canadian Notifiable Avian Influenza Surveillance System (CanNAISS) [3]

Figure 3: Potential impact of the probability of introduction (CanNAISS example [3])

RELATIONSHIP between CD, TP, DP and PIntro

To set a value or distribution for PIntro we need to consider the CD, TP, DP and reference population (Figure 2).

The model [1] assumes independence of test results from one TP to the next. This may be achieved by careful consideration of how CD, TP, DP are defined or by designing the surveillance to avoid re-sampling. Therefore, CD, TP and DP are tied together by the objective of the surveillance and a biologically plausible assumption of independence (Figure 2). With the detection limit we understand the number of farms and animals that would be diseased in a TP given the CD, DP and the reference population (Figure 2).

Based on a good understanding of the detection limit we can define PIntro as the probability that a disease (as defined by the CD) enters (or spreads) the reference population and establishes at the level of the DP in one TP.

IMPACT of probability of introduction

We applied the published CanNAISS scenario tree model [3] to illustrate the potential impact of PIntro. Specifically, we compared the outcome distribution (posterior probability of freedom (PostPFree) in December 2011 in British Columbia (BC)) with two different the input distributions (PIntro): (1) Monthly PIntro(1) $=\operatorname{pert}(0.067,0.083,0.1)$ based on published estimation of PIntro (outbreak/TP)
(2) Monthly PIntro (2) $=\operatorname{probability}\left(1^{\text {st }}\right.$ infection) x probability(establishment) $=\operatorname{pert}(0.04,0.06,0.08) \mathrm{x}$ pert(0.001, 0.2, 0.95)
Both PIntro(2) and PostPFree(2) were lower, wider and more skewed than PIntro(1) and PostPFree(2) because the distribution for establishment was wide and skewed. The impact on PostPFree at the end of December 2011 was substantial the mean of the PostPFree increased from 87%, to 96% (Figure 3).

CONCLUSION

> The value or distribution of the probability of introduction can have a substantial impact on the posterior probability of freedom.
> The probability of introduction depends on the detection limit and therefore also on CD, TP, DP and the population. > The CD, TP and DP need to be set to meet the objective of the surveillance and the assumption of independence of test results from one time period to the next should be biologically plausible.

REFERENCES

[1] Martin, Cameron, Greiner.2007. "Demonstrating Freedom from Disease using Multiple Complex Data Sources. 1: A New Methodology Based on Scenario Trees." PVM 79 (2-4): [2] Alban, Boes, Kreiner, Petersen, Willeberg. 2008. "Towards a Risk-Based Surveillance
 Canadian Notifiable Avian Influenza Surveillance System and its Application to Estimation of Probability of Freedom and Sample Size Determination." PVM 99 (2-4): $161-175$
[4] Frössling, Agren, Eliasson-Selling, Lewerin. 2009. "Probability of Freedom from Disease After the First Detection and Eradication of PRRS in Sweden: Scenario-Tree
 [5] Goutard, Paul,Tavornpanich, Houisse, Chanachai, Thanapongtharm, Cameron, Stärk,
Roger. 2012. "Optimizing Early Detection of Avian Influenza H5N1 in Backyard and FreeRange Poultry Production Systems in Thailand." PVM. [6] Martin, 2008. "Current Value of Historical and Ongoing Surveillance for Disease
Freedom: Surveillance for Bovine Johne's Disease in Western Australia." PVM 84 (3-4): Freedom: Surveillance for Bovine Johne's Disease in Western Australia." PVM 84 (3-4):
291-309
[7] Martin, Cameron, Barfod, Sergeant, Greiner. 2007. "Demonstrating Freedom from [7] Martin, Cameron, Barfod, Sergeant, Greiner. 2007. "Demonstrating Freedom from
Disease using Multiple Complex Data Sources. 2: Case Study-Classical Swine Fever in Disease using Multiple Complex Data Sources. 2: Case Study-Classical Swine Fever in
Denmark." PVM 79 (2-4): $98-115$ Denmark. PMM Cameron, Greiner., Clifton-Hadley, Rodeia, Bakker, Salman, 2009. "Defining
[8] More, Cuat
Output-Based Standards to Achieve and Maintain Tuberculosis Freedom in Farmed Deer, Output-Based Standards to Achiieve and Maintain Tuberculosis Freedom in Farmed Dee
with Reference to Member States of the European Union." PVM $90(3-4) \cdot 254-267$ with Reference to Member States of the European Union." PVM 90 (3-4): $254-267$
99] Schuppers, Frey, Gotstein, Stark, Kihm, Regula. 2010. "Comparing the Demonst [9] Schuppers, Frey, Gottstein, Stärk, Kihm, Regula. 2010. "Comparing the Demonstration
of Freedom from Trichinella Infection of Domestic Piss by Traditional and Risk-Based
Surveillance." Epidemiolog and Infection 138 (9): 1242 -1251 [10] Wahlström, Frössling, Lewerin, Ljung, Cedersmyg, Cameron. 2010. "Demonstrating
Freedom from Mycobacterium Bovis Infection in Swedish Farmed Deer using Non-Survey Data Sources." PVM P4 (1-2): $108-118$
D11]Whahlstom Isomuru
[11]Wahlström, Isomursu, Hallgren, Christensson, Cedersmyg, Wallensten, Hjertqvist, Davidson, Uhhhorn, Hopp. 2011 . "Combining Information from Surveys of several Spec
to Estimate the Probability of Freedom from Echinococcus Multilocularis in Sweden, Finland and Mainland Norway." Acta Vet Scand 53 (1)
[12] Welby, Govaerts, Vanholme, Hooyberghs, Mennens, Maes, Van Der Stede. 2012.
"Bovine Tuberculosis Surveillance Alternatives in Belgium." PVM

